DEVELOPMENT OF A MOBILE ENVIRONMENTAL SENSORY UNIT PROTOTYPE

Cosmin Delea, Vincent Schneider, Johannes Oeffner

05.09.2019 - Shipping & Environment Conference Gothenburg, Sweden
Content

1. Motivation and Design Objectives
2. Technical Implementation
3. Results
4. Future Developments
Content

1. Motivation and Design Objectives
2. Technical Implementation
3. Results
4. Future Developments
Motivation

Background

Problem Description

- Shipping emits 2.5% of all GHG with most of them occurring in coastal areas
- IMO and EU regulations such as MAPROL Annex VI and EU-MRV require ships to regulate their emissions
- Measuring, monitoring & abating ship emissions in ports is difficult as timely fluctuations are high due to ship traffic

Idea

- Combining dynamically acquired environmental data with ship positions from AIS data
 - Allows analyzing the pockets of higher concentration, or
 - Influence of entities or gradients of emission throughout the day in a pre-set area when subjected to maritime traffic;
 - Enables determining the influence of single or multiple ships over measurements in a defined space

Solution

- Development of a low budget, low-power sensor platform permanently connected to shore
Design objectives

Proof-Of-Concept Project

- Objectives
 - Rainproof unit measuring environmental gases
 - Compatibility with on-board AIS Transceiver
 - TRL 5 aimed
 - Correlation of sensor values with actual own-ship position
 - Synchronisation of traffic-ships in a defined radius
 - Post-processing of the 2 datasets into a web-based application for visualisation

- Proof-Of-Concept project includes
 1. Developments of mobile environmental sensory unit (ESU) prototype
 2. Develop web-based data visualisation software (WebUI)
 3. Establish infrastructure for real time on-board to shore data transmission
Content

1. Motivation and Design Objectives
2. Technical Implementation
3. Results
4. Future Developments
Technical Implementation
ESU: Hardware Assembly

Features
- Modular & Scalable
- Low budget & Low-power
- Samples controlled air volume
- Rain proof

Components
- Arduino, Raspberry Pi
- Electrochemical low-cost sensors
 - Calibrated: Altitude, Humidity, Temperature, Pressure
 - Not calibrated: NO₂, PM₁₀, PM₂.5
Technical Implementation

WebUI Components

- **Components**
 - MEAN-Stack (MongoDB, Express.js, AngularJS, Node.js) as framework
 - OpenSeaMap
 - AMQP Message protocol
 - SQL Database
Content

1. Motivation and Design Objectives
2. Technical Implementation
3. Results
4. Future Developments
Results
WebUI Sensor Data Visualisation
Results

Post-processing Sensor Data

- Stationed from minute 30 to 45 the ship was positioned behind a berthing passenger ferry

- User visualisation

- Dataset post-processing
Results

WebUI: Visualising Sensor & Traffic-ship Data
Results
Post-processing Sensor Data (2)

- Test run for along 40 minutes river Elbe in Hamburg port, capturing AIS messages
- Sampling rate 1 sec (2452 data points)
Results

Analyzing traffic ship data

➢ ... while collecting AIS data at the same time
➢ ... collected 13579 AIS messages, of which 1349 were within 1 km range of our ship/sensor box
➢ ... which belonged to 179 different ships
➢ ... of which 15 ships and 96 data points were within a distance of 200 m of our ship/sensor at the time of data collection
Results

Analyzing sensor & traffic ship data
Results
Innovation & Limitations

Innovation
- Usage of low-powered SBCs (<10W) for interfacing sensors and ship bridge with shore centre
- Real-time data gathering over 5G network
- Modularisation for increasing scalability

Limitations
- Difficult to correlate dynamically acquired sensor data with past values of reference points
- Sensor values highly influenced by wind
- Device positioning on the ship may corrupt measurements

Disclaimer: Focus laid on application workflow, not on measurement accuracy (non calibrated sensors)
Content

1. Motivation and Design Objectives
2. Technical Implementation
3. Results
4. Future Developments
Future developments

SCIPPER (Shipping Contributions to Inland Pollution Push for the Enforcement of Regulations)

- **ESU Hardware redesign**
 - Upgrade for long term use in offshore environment
 - Calibrate low-cost sensors with high end systems over the long term (focus also on measurement accuracy)
 - Integration of wind speed and direction

- **WebUI**
 - Design and implement the Environmental Shipping Monitoring Centre (ESMC) for visualization and fusion of sensor data from multiple sensors and types
 - Area meshing with stationary bases for methodological detection of pockets of pollution
CONTACT

Cosmin Delea, M.Sc.
Fraunhofer-Center für Maritime Logistik und Dienstleistungen CML
Am Schwarzenberg-Campus 4
21073 Hamburg · Germany

+49 (0) 40 42878-6134
Cosmin.Delea@cml.fraunhofer.de

WWW.CML.FRAUNHOFER.DE