Microscale Ship Plume Dispersion Modeling for Harbor Areas

R. Badeke, V. Matthias, D. Grawe and H. Schlünzen

Institute of Coastal Research
In cooperation with Fudan University Shanghai

Project ShipChem

5th of September 2019
INTRODUCTION

Key Challenges of Ship Emission Modeling

Ship Emissions

- Ozone Concentration
- Smog
- Acid Deposition

Air Quality

- Reduction of Visibility

Human Health

- Premature Deaths
- Cardiopulmonary Diseases
- Lung Cancer

Climate Change

- GHG Emission
- Scattering
- Absorption
- Radiation Balance
- Altering Cloud Properties

Microscale Ship Plume Dispersion Modeling for Harbor Areas
INTRODUCTION

Population Density of Hamburg

Population Density

- 0 - 570 people per sq km
- 570 - 6,800 people per sq km
- 6,800 - 13,100 people per sq km
- 13,100 - 15,400 people per sq km
- 15,400 - 600,000 people per sq km

Microscale Ship Plume Dispersion Modeling for Harbor Areas
INTRODUCTION

Conceptual Model

Microscale Ship Plume Dispersion Modeling for Harbor Areas
INTRODUCTION

Conceptual Model

Microscale Ship Plume Dispersion Modeling for Harbor Areas
INTRODUCTION
Aims of the research

- Improve the ship plume emission and transport modeling in city-scale models
 ➔ Plume rise
 ➔ Turbulence

- Connecting Microscale and City-scale models
 ➔ Handover values for vertical concentration profiles
METHODS

Model Chain

Microscale Ship Plume Dispersion Modeling for Harbor Areas
METHODS
Model Chain

PLURIS \rightarrow \text{Plume Rise} \rightarrow \text{EPISODE-CityChem}

Momentum-driven regime

Buoyancy-driven regime

Handover point

$T_{\text{plume}} > T_{\text{environment}}$

$T_{\text{plume}} \approx T_{\text{environment}}$

Microscale Ship Plume Dispersion Modeling for Harbor Areas
METHODS
PLURIS

- Analytical solution of bent-over plumes by integral modeling
- Conservation of:
 - mass
 - momentum
 - energy
 - scalar quantities (e.g. T, c)
- Parametrization of entrainment function
RESULTS

PLURIS

Microscale Ship Plume Dispersion Modeling for Harbor Areas
RESULTS
Calculation of Handover Values

Handover Criteria:
• Plume dispersion is dominated by buoyancy
• Plume temperature equals surrounding temperature

CityChem vertical layers
\[v_{\text{wind}} = 5 \text{ m/s} \]
\[v_{\text{plume}} = 10 \text{ m/s} \]
\[T_{\text{air}} = 15 ^\circ \text{C} \]
\[T_{\text{plume}} = 200 ^\circ \text{C} \]
\[\text{Emission: 25 kg/h} \]
RESULTS
Dependency on Stack Height

K. Reinck

Microscale Ship Plume Dispersion Modeling for Harbor Areas
Numerical 3D modeling of meteorological parameters, concentration, etc.

High resolution of $1\,m \times 1\,m \times 1\,m$ possible

Obstacle resolving ➔ considers object-induced turbulence

Equations:
- Navier-Stokes Equation
- Continuity Equation
- Conservation Equation for scalar quantities

Salim et al. (2018)
OUTLOOK

Model Chain

Microscale Ship Plume Dispersion Modeling for Harbor Areas
$v_{\text{wind}} = 5\ \text{m/s}$
$v_{\text{plume}} = 10\ \text{m/s}$

$T_{\text{air}} = 15\ ^\circ\text{C}$
Emission: 20 kg/h

$T_{\text{plume}} = 200\ ^\circ\text{C}$
What we want to do:

- Include (photo-)chemical transformation
 - $\text{NO}_x + \text{O}_3$
 - SO_2
 - PM2.5
- Simulate real situations and compare model results with measurements

What we need:

- Ship-specific data
 - Number of stacks, engine type, engine power use
 - Emission data (chemical composition, emission rate)
- Close collaboration between measurement groups and (other) modelers (CFD, LES)
REFERENCES

